首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583423篇
  免费   28013篇
  国内免费   6971篇
电工技术   35063篇
综合类   6460篇
化学工业   267656篇
金属工艺   66867篇
机械仪表   46637篇
建筑科学   46893篇
矿业工程   11861篇
能源动力   50408篇
轻工业   120160篇
水利工程   16135篇
石油天然气   37624篇
武器工业   152篇
无线电   200145篇
一般工业技术   300381篇
冶金工业   203387篇
原子能技术   34649篇
自动化技术   173929篇
  2021年   15472篇
  2020年   12013篇
  2019年   14762篇
  2018年   19629篇
  2017年   19257篇
  2016年   23259篇
  2015年   17807篇
  2014年   28924篇
  2013年   88548篇
  2012年   38394篇
  2011年   53868篇
  2010年   46423篇
  2009年   54285篇
  2008年   49351篇
  2007年   47326篇
  2006年   46394篇
  2005年   42539篇
  2004年   43765篇
  2003年   43279篇
  2002年   41862篇
  2001年   38904篇
  2000年   37052篇
  1999年   36849篇
  1998年   57476篇
  1997年   46487篇
  1996年   37617篇
  1995年   32981篇
  1994年   30485篇
  1993年   30438篇
  1992年   26368篇
  1991年   23597篇
  1990年   23945篇
  1989年   22902篇
  1988年   21412篇
  1987年   19723篇
  1986年   19128篇
  1985年   22420篇
  1984年   22290篇
  1983年   20208篇
  1982年   19207篇
  1981年   19372篇
  1980年   18006篇
  1979年   18413篇
  1978年   17733篇
  1977年   18069篇
  1976年   19922篇
  1975年   15909篇
  1974年   15406篇
  1973年   15536篇
  1972年   13061篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
91.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
92.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
93.
Journal of Communications Technology and Electronics - Abstract—The matrix coefficients of projection models of strip lines obtained using the Chebyshev basis are presented as a sum of...  相似文献   
94.
Analog Integrated Circuits and Signal Processing - This paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The...  相似文献   
95.
Catalysis Letters - An environmentally benign process for synthesizing 4-methoxyphenol through methylation of hydroquinone using polystyrene immobilized Bronsted acidic ionic liquid is presented....  相似文献   
96.
97.
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.  相似文献   
98.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
99.
100.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号